@router.post(
"/v1/embeddings",
dependencies=[Depends(validate_json_request)],
responses={
HTTPStatus.BAD_REQUEST.value: {"model": ErrorResponse},
HTTPStatus.INTERNAL_SERVER_ERROR.value: {"model": ErrorResponse},
},
)
@with_cancellation
@load_aware_call
async def create_embedding(
request: EmbeddingRequest,
raw_request: Request,
):
handler = embedding(raw_request)
if handler is None:
base_server = raw_request.app.state.openai_serving_tokenization
return base_server.create_error_response(
message="The model does not support Embeddings API"
)
try:
generator = await handler.create_embedding(request, raw_request)
except Exception as e:
raise HTTPException(
status_code=HTTPStatus.INTERNAL_SERVER_ERROR.value, detail=str(e)
) from e
if isinstance(generator, ErrorResponse):
return JSONResponse(
content=generator.model_dump(), status_code=generator.error.code
)
elif isinstance(generator, EmbeddingResponse):
return JSONResponse(content=generator.model_dump())
elif isinstance(generator, EmbeddingBytesResponse):
return StreamingResponse(
content=generator.body,
headers={"metadata": generator.metadata},
media_type=generator.media_type,
)
assert_never(generator)